How expertise changes perceptual processes

Evidence from Eye Movement studies in reading

Raymond Bertram

Department of Speech-Language Pathology and Psychology
University of Turku, Finland

Keynote at ETRA 2020 for EMIP, 2.6.2020
* How does expertise change perceptual processes?
* Comparison: **novice – expert => extreme differences**

Novel reader (1st grade fall) vs expert reader (adult student)

‘Äiti arveli, että juusto oli homeessa’
‘Mom thought, that the cheese was moldy’
Pupil, 1st grade, fall vs. Skilled adult
Pupil, 1st grade, fall vs. Skilled adult

21 fixations, mean fixation duration 375 ms, 6 regressions, no skips, 7.86 seconds altogether, 1.3 s per word

4 fixations, mean fixation duration 235 ms, 1 regression, 2 skips, 0.94 seconds altogether, 150 ms per word
Beginning reader

gör jag det genom att omtala att allting i de röda landen är skapt och sker

Expert reader

Osaskadulla Heikki ä kyrknoti ruutiss sa_reikkuva
muitivento.
Beginning reader: Gör jag det genom att omtala att allting i de röda landen är skapt och sker.

Expert reader: Oskadulla Heikkiä kihnetti ruumassa roikkuvaa muotivena.
Beginning reader

gör jag det genom att omtala att allting i de röda landen är skapt och sker

Expert reader

Onskadulla Heikkiä kiitos ti ruumessa rokkuvaa

muciivato.

```cpp
#include <iostream>
#include <string>

int g_variable = 10;

auto main(int argc, char* argv[]) -> decltype(0){
    int l_variable = 20;

    const char* cl_variable = "Const Character String";
    static const char* scl_variable = " Static Const Character String";

    return 0;
}
```
Survey of the presentation

1. Use of visual cues
2. Development of perceptual span => horizontal & vertical
3. Speed of information uptake = foveal & parafoveal
 - The Disappearing text paradigm
 - The Boundary paradigm
4. Push the limits
5. Some remaining issues
 - Text reading vs code reading
 - Data quality
6. Summary with suggestions for future EMIP research

All these issues discussed in context of expertise development
1. Use of visual cues in reading

Visual cues are used to facilitate reading

Text Level: Headings, subheadings, whitelines, indentation, bolding, underlining
⇒ Inform you about organization of the text

Sentence level: Spaces, specific character combinations
⇒ Inform you about word boundaries
1. Use of visual cues in reading

Visual cues are used to facilitate reading

Text Level: Headings, subheadings, whitelines, indentation, bolding, underlining

⇒ Inform you about organization of the text

Sentence level: Spaces, specific character combinations

⇒ Inform you about word boundaries

 Reading without spacing is 30% slower than reading with spaces
1. Use of visual cues in reading

Visual cues are used to facilitate reading

Text Level: Headings, subheadings, whitelines, indentation, bolding, underlining
⇒ Inform you about organization of the text

Sentence level: Spaces, specific character combinations
⇒ Inform you about word boundaries

Reading without spacing is 30% slower than reading with spaces
(Rayner & Pollatsek, 1996)
1. Use of visual cues in reading

Visual cues are used to facilitate reading

Text Level: Headings, subheadings, whitelines, indentation, bolding, underlining
⇒ Inform you about organization of the text

Sentence level: Spaces, specific character combinations
⇒ Inform you about word boundaries

Reading without spacing is 30% slower than reading with spaces (Rayner & Pollatsek, 1996)
Not in Japanese though (Sainio, Bingushi, Hyönä, Bertram, 2007)
1. Use of visual cues in reading

Visual cues are used to facilitate reading

Word level: To denote sublexical structure

⇒ Inform you about the structure of a word

E.g., the space in English compounds: garden party
E.g., the hyphen in Finnish compounds: vaihto-ohjelma ’exchange program’
1. Use of visual cues in reading

Visual cues are used to facilitate reading:
Assumption is that low-proficient readers need more visual cues

Japanese Children
L2 Readers: used to space but not
canacter sequence info to find
word boundaries
1. Use of visual cues in reading

Visual cues are used to facilitate reading:
Assumption is that low-proficient readers need more visual cues

Japanese Children
L2 Readers: used to space but not character sequence info to find word boundaries

Finnish 1st and 2nd graders
1. Use of visual cues in reading

Visual cues are used to facilitate reading:
Assumption is that low-proficient readers need more visual cues

There is evidence that supports this notion

Adults facilitated by hyphen when processing long but not short compounds:
2nd graders: facilitated by hyphen when processing long & short compounds

Bertram & Hyönä, 2013; Häikiö, Bertram, Hyönä, 2011

Probably need of extra visual cues not only on word level
1. Use of visual cues in code reading

Use of visual cues in reading code (code comprehension, addition, debugging)
Code conventions: Colors, Indentation, Capitalization

* Visual cues more important for novice/beginning coders?

```python
if x == 1:
    print ("x is 1")
    print ("x is odd")
if x == 1:
    print ("x is 1")
    print ("x is odd")
```
1. Use of visual cues in code reading

Use of visual cues in reading code (code comprehension, addition, debugging)
 Code conventions: Colors, Indentation, Capitalization

• In general, to what extent are they used by novices vs expert
 ⇒ EM guidance

* Visual cues more difficult in L2 when not compatible with L1
 cross-language interference? (Strong L1 Javascript – Weak L2 C++)

 ⇒ Few EM exp. in EMIP on use visual cues – expertise development
 ⇒ Measures affected by vc: durations, saccadic amplitude, scan paths
2. Development of the perceptual span

- Perceptual span: Area from which we extract useful information during reading
- Size of perceptual span measured by moving window paradigm
2. Development of the perceptual span

Perceptual span: depends on direction of attention & information density.

- Parafovea: poor acuity
- Fovea: good acuity
- Periphery: poor acuity

Perceptual span: attention
2. Development of the perceptual span

Moving window (Häikiö, Bertram, & Hyönä, 2009)

Notkea kissa oppii liikkumaan taitavasti vaikeissakin paikoissa. Suuresta, sileästä puustaa kissa...

[The flexible cat learns to move skillfully even in hard places. The cat [gets down] from a large smooth tree...]
Notkea kisss cqqll illhhnwssu felfeueafl uelbslaeblu qelhclees. Boonaefs, alisöefö qnnafs hlees...

Window size 11 characters
Mcfbea kissa opqll illhhnwssu felfeueafl uelbslaeblu qelhclee.
Boonaefs, alisöefö qnnafs hlees...

Window size 11 characters
Mcfboe blasa oppii lilhwnwssu
felfeueafl uelbslaaeblu qelhclee.
Boonaefs, alisöefö qnnafs hlees...

Window size 11
characters
Mcfboe blaas cqql11(liikkumaan
felfeueafl uelbslaeblu qelhclees.
Boonaefs, alisöefö qnnafs hlees...

Window size 11
characters
2. Development of the perceptual span

Table 3
Type of information obtained to the right of fixation in the current study and Rayner (1986)

<table>
<thead>
<tr>
<th></th>
<th>Second grade</th>
<th>Fourth grade</th>
<th>Sixth grade</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter identity (current study)</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Letter feature (Rayner Experiments 2 and 3)</td>
<td>7</td>
<td>11–12</td>
<td>11–12</td>
<td>11–12</td>
</tr>
<tr>
<td>Word length (Rayner Experiment 1)</td>
<td>11</td>
<td>11</td>
<td>14</td>
<td>14–15</td>
</tr>
</tbody>
</table>

SPAN | W=5 | MANIPULATION | EXCLUDE
Letter identity (LI): oppii illhnhwssu (liikkumaan) – LI
Letter feature (LF): oppii xxxxxxxxxxxxx (liikkumaan) – LI + LF
Word length (WL): oppiixxxxxxxxxxxxxx (liikkumaan) – LI, LF + WL
2. Development of the perceptual span

<table>
<thead>
<tr>
<th>Table 3</th>
<th>LI</th>
<th>LF</th>
<th>WL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of information obtained to the right of fixation in the current study and Rayner (1986)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Second grade</td>
<td>Fourth grade</td>
<td>Sixth grade</td>
</tr>
<tr>
<td>Letter identity (current study)</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Letter feature (Rayner Experiments 2 and 3)</td>
<td>7</td>
<td>11–12</td>
<td>11–12</td>
</tr>
<tr>
<td>Word length (Rayner Experiment 1)</td>
<td>11</td>
<td>11</td>
<td>14</td>
</tr>
</tbody>
</table>
2. Development of the perceptual span

Table 3
Type of information obtained to the right of fixation in the current study and Rayner (1986)

<table>
<thead>
<tr>
<th>Type of information</th>
<th>Second grade</th>
<th>Fourth grade</th>
<th>Sixth grade</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter identity (current study)</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Letter feature (Rayner Experiments 2 and 3)</td>
<td>7</td>
<td>11–12</td>
<td>11–12</td>
<td>11–12</td>
</tr>
<tr>
<td>Word length (Rayner Experiment 1)</td>
<td>11</td>
<td>11</td>
<td>14</td>
<td>14–15</td>
</tr>
</tbody>
</table>

- Growing expertise, growing span; asymptote reached after 6 years of reading experience
- Would that be the same when gaining expertise in reading code?
2. Development of the perceptual span

Window size 11 characters

* Additional need: vertical perceptual span to capture non-linear reading
Vertical perceptual span and the processing of visual signals in reading

Fabrice Cauchard and Hélène Eyrolle
University of Toulouse, Toulouse, France

Jean-Marie Cellier
Ecole Pratique des Hautes Etudes, Paris and University of Toulouse, Toulouse, France

Jukka Hyöna
University of Turku, Turku, Finland
Normal condition: => More returns and time spent on (sub)headings

Code readers: => Low expertise: Linear reading => small windows sufficient
3. Speed of information processing: foveal

- Speed information uptake foveal area: **disappearing text paradigm**
- Adults have no cost when fixated word disappears after 60ms (Rayner et al., 2003; Liversedge et al., 2004).

\[
0 \text{ ms: } \text{Sam wore the horrid coat though his pretty girlfriend complained.} \\
60\text{ms: } \text{Sam wore the horrid though his pretty girlfriend complained.}
\]

<table>
<thead>
<tr>
<th>Sentence RT</th>
<th>Normal</th>
<th>Disappearing</th>
<th>No Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>3286</td>
<td>3327</td>
<td>(ts < 1)</td>
</tr>
</tbody>
</table>

- Different with 8-9 year olds reading longer words e.g., sairaala (Blythe, Häikiö, Bertram, Liversedge, Hyönä, 2011)

\(\Rightarrow \) Can be used as a way to measure expertise, also in code reading
3. Speed of information processing: parafoveal

- Cost when parafoveal word disappears after 60ms => underlines importance of parafoveal word in reading (Rayner, Liversedge, & White., 2005).

<table>
<thead>
<tr>
<th>Sentence RT</th>
<th>Normal</th>
<th>Disappearing</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N+1</td>
<td>3449</td>
<td>4045</td>
<td>$p < .05$</td>
</tr>
</tbody>
</table>

- Different with children making less use of parafoveal info?
 ⇒ Can be used as a way to measure expertise, also in code reading
 ⇒ Also boundary paradigm used to assess nohana of parafov. proc.
3. Speed of information processing: parafoveal

- Cost when parafoveal word disappears after 60ms => underlines importance of parafoveal word in reading (Rayner, Liversedge, & White., 2005).

<table>
<thead>
<tr>
<th>Sentence RT</th>
<th>Normal</th>
<th>Disappearing</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N+1</td>
<td>3449</td>
<td>4045</td>
<td>p < .05</td>
</tr>
</tbody>
</table>

0 ms: Sam wore the horrid coat though his pretty girlfriend complained.

60ms: Sam wore the horrid coat his pretty girlfriend complained.

- Different with children making less use of parafoveal info?
 ⇒ Can be used as a way to measure expertise, also in code reading
 ⇒ Also boundary paradigm used to assess nature of parafoveal proc.
3. Speed of information processing: parafoveal

- Research demonstrates that parafoveal processing is critical for normal efficient reading.

- Parafoveal preview benefit

- How important is parafoveal processing for reading code?

- Disappearing code paradigm, or code boundary paradigm

- Also these paradigms could be vertically orientated

- Development in parafoveal processing ↔ Gaining expertise
4. Push the limits

- Finnish L2 speakers processing short high-frequency words (auto, posti)

 \implies no insight in level of expertise

- Real challenge \implies Morphophonological variation
consonant gradation (p, k, t):

- katu => kadulla ’on the street’
- ilta => illalla ’evening’ => ’in the evening’
- tauko => tauolla ’in the break’

But katu => katua ’street (ptv)

keitin => keittimellä ’with the cooker’

(4 morphophon. rules in one inflection)

ystävyys, ystävyyden, ystävyyttä, ystävyytiin, ystävyykseen
Morphophonological Variation

- L2-speakers disproportionate problems with Consonant Gradation (Salmela, Bertram, Lehtonen, & Vainio, submitted).

Mono: Koska lääkäri oli neuvonut minua lepäämään, päätin jäädä kotiin.
Inf: Koska aamulla oli pilvistä, otin mukaani sateenvarjon. - aamu
InfC: Koska illalla oli huono ilma, en mennyt ulos – ilta (CG)
L2-speakers disproportionate problems with Consonant Gradation (Salmela, Bertram, Lehtonen, & Vainio, submitted).
Morphophonological Variation
4. Push the limits

=> Don’t use too easy code snippets when trying to assess EM-patterns related to expertise
5. Text vs Code Reading: Some Remaining issues

a. Comparing text reading with code reading

- What drives EM behavior?

- Text Reading: word length, frequency, predictability directly related to EM measures (durations, saccadic amplitude, skips, regressions).

- These factors have been assessed wrt expertise development as well (e.g., effect of WL decreases with age).

- Code Reading: Factors that may be linked to EM measures: Place in hierarchy, degree of repetition, relevance, line length, visual cues

⇒ systematic investigations

- Interaction of expertise and these factors?
Collaborative research efforts => Next to cross-laboratory and cross-linguistic studies, development of Eye-tracking corpora for reading:

- English (Frank et al., 2013; Luke & Christianson, 2018)
- German (Kliegl et al., 2006)
- Hindi (Husain et al., 2014)
- Russian (Laurinavichyute et al., 2019).
- English-French (Pynte & Kennedy, 2006; Whitford & Titone, 2012)
- English-Dutch: GECO (Cop et al., 2017)

- MECO – (Siegelman, Kuperman et al., in preparation):
 Multilingual eye movement corpus https://meco-read.com/

 English, Dutch, Finnish, German, Hebrew, Spanish, Turkish, Russian, Italian, Norwegian, Greek, Korean as L1 & all of these for English as L2
5. Summary & suggestions for future EMIP research

1. Visual cues heavily used on word, sententence and text level
 ⇒ Segmentation into smaller units, text organisation
 ⇒ Language proficiency related to usefulness of visual cues
 ⇒ Code: visual cue exploitation related to expertise?

2. Perceptual span grows with development, levels off at grade 6
 ⇒ Developmental pattern in code reading
 ⇒ Worth considering to investigate vertical span

3. Parafoveal processing crucial for fluent reading.
 ⇒ Information extraction of upcoming word affords fast reading rate
 ⇒ Code disappearing and code boundary paradigm to assess development of parafoveal processing in code reading
 ⇒ Possibly also in vertical direction
5. Summary & suggestions for future EMIP research

4. Large-scale corpora or cross-linguistic enterprises
⇒ plenty of subjects to enhance data quality
⇒ background questionnaires and tests that can be linked to expertise development (e.g., memory span)

5. Direct comparison between text reading & code reading
⇒ Factors that predict eye movement behavior in reading known, in coding less established.
⇒ Interaction of factors with expertise
⇒ Expertise may play out in certain measures (e.g., scan path) but not in others (e.g., dwell time, saccadic amplitude)
KIITOS

&

HAVE A GOOD CONFERENCE!